TEOREMA de Schwarz

Sea f una función de dos variables x e y. Si f, f_x , f_y , f_{xy} y f_{yx} son continuas en un conjunto abierto D, entonces, $f_{xy} = f_{yx}$ en D

Observación $f_{xy} = f_{yx}$ puede ser falsa si las derivadas mixtas nos son continuas.

• Las derivadas de orden 3 y de orden superiores se definen de manera semejante de las derivadas de segundo orden. Por ejemplo,

$$f_{xyy} = (f_{xy})_y = \frac{\partial}{\partial y} \left[\frac{\partial^2 z}{\partial y \partial x} \right] = \frac{\partial^3 z}{\partial y^2 \partial x}$$

Para funciones de más de dos variables se usan notaciones parecidas y se tienen resultados análogos

PROPIEDAD 4

Sea f: $D \subset \mathbb{R}^n \to \mathbb{R}$, una función definida en un conjunto abierto D de \mathbb{R}^n .

Si f y todos sus derivadas parciales de segundo orden $\frac{\partial^2 f}{\partial x_i \partial x_j}$ son

continuas, entonces,
$$\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_i}$$
, i, j = 1,2,...,n

UNALM-Departamento de Matemática

Profesor: Juan Dueñas B.

$$\begin{split} \text{Ejemplo Determinar: i)} \;\; f_{xxy} \;, \; si \; f(x,y,z) &= ln(2\; x + y + 3\; z) \\ \text{ii)} \;\; \frac{\partial^{\,2} u}{\partial \, x^{\,2}} + \; \frac{\partial^{\,2} u}{\partial \, y^{\,2}} + \; \frac{\partial^{\,2} u}{\partial \, z^{\,2}} + \; \frac{\partial^{\,3} u}{\partial \, x \, \partial \, z \, \partial \, y} \;, \; si \;\; u = e^{2\, x \, + y \, - z} \end{split}$$

DERIVADAS DIRECCIONALES Y GRADIENTES

DEFINICIÓN DE DERIVADA DIRECCIONAL

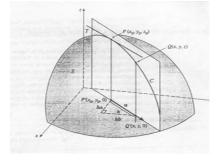
 Sea f una función de dos variables, x e y. La derivada direccional de f en (x₀,y₀) en la dirección del vector unitario u = < a, b >, denotado por D_u f, se define como:

$$D_uf(x_0,y_0)=\lim_{h\to 0}\frac{f(x_0+ha,y_0+hb)-f(x_0,y_0)}{h}, \text{ si este límite existe.}$$

 Sea f una función de tres variables, x, y, z. La derivada direccional de f en (x₀,y₀, z₀) en la dirección del vector unitario u = < a, b, c >, denotado porD_uf, se define como:

$$D_u f(x_0, y_0, z_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb, z_0 + hc) - f(x_0, y_0, z_0)}{h}, \text{ si este}$$
 límite existe.

Nota. Se dice que el vector u es unitario, si norma es igual a uno.



PROPIEDAD

Profesor: Juan Dueñas B.

UNALM-Departamento de Matemática

Si f es una función diferenciable de x e y, entonces, la derivada direccional en la dirección del vector unitario $\mathbf{u} = \langle a, b \rangle$, es:

$$D_u f(x,y) = f_x(x,y) a + f_y(x,y) b$$

Ejemplo: Si $f(x,y)=x^2+y^3$, determinar la razón de cambio de f en el punto P(-1,1) en la dirección de P a Q(3,0).

DEFINICIÓN DEL GRADIENTE

 Sea z = f(x,y) una función de dos variables x e y, entonces, el gradiente de f, es la función vectorial ∇f(x,y) definida como:

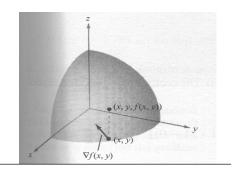
$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}, \text{ donde:}$$

$$\mathbf{i} = \langle 1, 0 \rangle; \mathbf{j} = \langle 0, 1 \rangle$$

 Sea f una función de tres variables x, y, z; entonces, el gradiente de f, es la función vectorial ∇ f(x,y,z) definida como:

$$\nabla \, f(x,y,z) = < f_x \, (x,y,z), \, f_y \, (x,y,z), \, f_z \, (x,y,z) > = \, \frac{\partial f}{\partial x} \, \, \mathbf{i} \, + \, \frac{\partial \, f}{\partial \, y} \, \, \mathbf{j} \, + \, \frac{\partial \, f}{\partial \, z} \, \, \mathbf{k},$$

donde: i = < 1, 0, 0 >; j = < 0, 1, 0 >; k = < 0, 0, 1 >



El gradiente de f(x,y) es un vector en el plano xy

PROPIEDAD

Profesor: Juan Dueñas B.

UNALM-Departamento de Matemática

Si f es una función (de dos o tres variables) diferenciable, su derivada direccional en la dirección del vector unitario **u** , es:

$$D_{\mathsf{u}}\mathsf{f}(\mathsf{x},\mathsf{y}) = \nabla \,\mathsf{f}(\mathsf{x},\mathsf{y}) \,\,.\,\,\mathbf{u}$$
$$D_{\mathsf{u}}\mathsf{f}(\mathsf{x},\mathsf{y},\mathsf{z}) = \nabla \,\mathsf{f}(\mathsf{x},\mathsf{y},\mathsf{z}) \,\,.\,\,\mathbf{u}$$

PROPIEDADES DEL GRADIENTE

Sea f una función diferenciable de dos o tres variables.

- 1. Si ∇ f(**x**)= **0**, entonces, $D_{\mathbf{u}}$ f(**x**) = 0, para todo **u**
- La dirección de máximo crecimiento de f viene dado por ∇f(x). El valor máximo de D_uf(x) es ∥∇f(x)∥.
- La dirección de mínimo crecimiento de f viene dado por -∇f(x). El valor mínimo de D_uf(x) es || ∇f(x) ||.